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Abstract Recent results indicate that association map-

ping in populations from applied plant breeding is a pow-

erful tool to detect QTL which are of direct relevance for

breeding. The focus of this study was to unravel the genetic

architecture of six agronomic traits in sugar beet. To this

end, we employed an association mapping approach, based

on a very large population of 924 elite sugar beet lines from

applied plant breeding, fingerprinted with 677 single

nucleotide polymorphism (SNP) markers covering the

entire genome. We show that in this population linkage

disequilibrium decays within a short genetic distance and is

sufficient for the detection of QTL with a large effect size.

To increase the QTL detection power and the mapping

resolution a much higher number of SNPs is required. We

found that for QTL detection, the mixed model including

only the kinship matrix performed best, even in the pres-

ence of a considerable population structure. In genome-

wide scans, main effect QTL and epistatic QTL were

detected for all six traits. Our full two-dimensional epis-

tasis scan revealed that for complex traits there appear to

be epistatic master regulators, loci which are involved in a

large number of epistatic interactions throughout the

genome.

Introduction

Association mapping is emerging as a novel tool in plant

genomics (Myles et al. 2009) and has recently been shown

to be suited for the analysis of populations from applied

breeding programs (e.g. Reif et al. 2011a; Würschum et al.

2011). The detection of QTL in these populations offers the

advantage that QTL are identified which are of direct rel-

evance for breeding. A potential problem of association

mapping in plant populations is the inherent population

structure. Any nonfunctional associations between the trait

and the underlying population structure will also be

detected as QTL (Zhao et al. 2007). Two methods have

recently been suggested to correct for population stratifi-

cation (P matrix) and familial relatedness (K matrix) (Price

et al. 2006; Yu et al. 2006; Astle and Balding 2009;

Cockram et al. 2010). As both, the K and the P matrix, are

estimated based on marker data, their simultaneous use

may result in overcorrection for population structure

leading to a reduced power to detect QTL. Using experi-

mental data in sugar beet, it has recently been shown that in

breeding populations without a major population structure,

the K matrix is sufficient to control the genetic background

(Würschum et al. 2011).

Association mapping is based on linkage disequilibrium

(LD) between the examined molecular markers and QTL

associated with the trait. The mapping resolution of asso-

ciation mapping is expected to be higher than in classical

linkage mapping as it exploits all the recombination events

that have occurred during the history of the population. LD

is population specific and affected by many genetic factors

(Flint-Garcia et al. 2003). Moreover, LD is highly variable

across the genome. The power to detect QTL depends on

the strength of the LD between the marker and the QTL.

High r2 values are required to detect medium and small
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size QTL whereas lower r2 values will only allow the

detection of QTL with large effects. In plant breeding

populations LD is expected to be higher than in natural

populations due to the selection of favorable genotypes and

the shorter history of that germplasm. Recent results,

however, have indicated that the extent and structure of LD

enables a good mapping resolution also in populations

derived from breeding programs (Van Inghelandt et al.

2010).

Epistasis is defined as interactions between alleles from

different loci (Carlborg and Haley 2004). Consequently,

the presence of epistasis will impede the prediction of the

phenotype of an individual simply by the sum of its single-

locus effects (Lynch and Walsh 1998). There is accumu-

lating evidence for the presence of epistasis in model

organisms at the molecular and biochemical level (e.g.

Tong et al. 2004; St Onge et al. 2007; He et al. 2010;

Costanzo et al. 2010), but little attention has been paid to

the importance of epistasis for the performance of elite

breeding germplasm (Li et al. 2010; Miedaner et al. 2010;

Reif et al. 2011a, b; Würschum et al. 2011).

Sugar beet (Beta vulgaris L.) is of major importance for

sugar production worldwide (Draycott 2006). It is also of

interest from a scientific point of view, as it serves as an

excellent model crop to study the genetic architecture of

yield-related and physiological traits such as sodium,

potassium and a-amino nitrogen content. Different map-

ping approaches have identified QTL for the abovemen-

tioned traits (Weber et al. 1999; Weber et al. 2000;

Schneider et al. 2002; Stich et al. 2008; Reif et al. 2010;

Würschum et al. 2011). Nevertheless, advances in

sequencing technologies have increased the availability of

molecular markers, and an analysis of the genetic archi-

tecture of these traits using high-density genetic maps is

still lacking.

The objectives of our study were to (1) estimate the

marker density required for genome-wide association

mapping in a vast elite breeding population of sugar

beet, (2) compare biometric models to correct for dif-

ferent levels of population structure with regard to the

QTL detection power, and (3) dissect the genetic archi-

tecture of agronomically important yield and physiolog-

ical traits.

Materials and methods

Plant materials, field experiments, and molecular

markers

This study was based on 924 diploid elite sugar beet

(B. vulgaris L.) inbred lines. Testcross progenies were

produced by crossing the genotypes to a single-cross hybrid

as tester. All material used in this study was provided by

the breeding company Syngenta Seeds AB (Sweden).

The 924 genotypes were evaluated in routine plant

breeding trials with two replicates at 1–7 locations with on

average 3 locations per genotype in 2008. The evaluated

traits were white sugar yield (WSY, t ha-1), sugar content

(SC, %), root yield (RY, t ha-1), potassium (K, mM),

sodium (Na, mM) and a-amino nitrogen (N, mM) (Sup-

plementary Figure 1).

The 924 genotypes were fingerprinted following stan-

dard protocols with 677 single nucleotide polymorphism

(SNP) markers. SNP discovery was based on sequencing of

RDLP markers and public ESTs. These markers were

randomly distributed across the sugar beet genome with an

average marker distance of 1 cM and the two largest gaps

between adjacent markers had 11 and 23 cM (Supple-

mentary Figure 2). 97% of the adjacent markers had a

genetic map distance of \5 cM and 85% of \2 cM. Map

positions of all markers were based on the linkage map of

Syngenta Seeds AB with a total map length of 698 cM

(unpublished data).

Phenotypic and molecular data analyses

The analyses were based on adjusted entry means [best

linear unbiased estimates (BLUEs)] calculated for each

location. The following linear mixed model was used to

estimate variance components of the testcrosses:

yij = l ? lj ? gi ? eij, where yij is the adjusted entry

mean of the ith sugar beet line at the jth location, l the

intercept term, lj the effect of the jth location, gi the genetic

effect of the ith sugar beet line, and eij the error term

including the genotype times location interaction effect.

Locations and genotype were modeled as a random effect.

Variance components were determined by the restricted

maximum likelihood (REML) method. Significance for

variance component estimates was tested by model com-

parison with likelihood ratio tests where the halved P val-

ues were used as an approximation (Stram and Lee 1994).

Heritability (h2) on an entry-mean basis was estimated as

the ratio of genotypic to phenotypic variance according to

Melchinger et al. (1998), based on the average replicate

number. Furthermore, genotypes were regarded as fixed

effects and BLUEs were determined for all genotypes and

traits.

Associations among the 924 genotypes were analyzed

by applying principal coordinate analysis (PCoA) (Gower

1966) based on the modified Rogers’ distances of the

individuals (Wright 1978). LD was assessed by the LD

measure r2 (Weir 1996) and significance of LD was tested

with Fisher’s exact tests (Hill and Robertson 1968). LD and

PCoA computations were performed with the software

package Plabsoft (Maurer et al. 2008).
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Association mapping

The mixed model for the association mapping approach

was: yijp = l ? ap ? gi ? lj ? eijp, where yijp is the

adjusted entry mean of the ith sugar beet line at the jth

location carrying allele p, l the intercept term, ap the allele

substitution effect of allele p, gi the genetic effect of the ith

sugar beet line, lj the effect of the jth location, and eijp the

residual. The allele substitution effect ap was modeled as

fixed effect whereas gi and lj were regarded as random

effects.

Association mapping populations often show a non-

functional correlation between the phenotype and the

population structure, which will lead to the detection of

false positive QTL. It has previously been shown that

correction with the kinship matrix, K, is sufficient in pop-

ulations from applied plant breeding programs (Würschum

et al. 2011). Nevertheless, as the population used in this

study shows a more pronounced population structure, two

additional models correcting for population structure were

tested. The K model included only the kinship matrix. The

KPReml model and the KPCor model included the K matrix

and principal coordinates (PCs) (Price et al. 2006). For the

KPReml model PCs were sequentially added as fixed effects

to the model until the first PC appeared which was not

significant any more at P \ 0.01 based on the Wald F sta-

tistic. The KPCor model included all PCs which were sig-

nificantly associated (P \ 0.01) with the BLUEs of the six

traits. In all three models the variance of the random

genetic effect was assumed to be Var(g) = Krg
2, where rg

2

refers to the genetic variance estimated by REML and

K was a 924 9 924 matrix of kinship coefficients that

define the degree of genetic covariance between all pairs of

entries. We followed the suggestion of Bernardo (1993)

and calculated the kinship coefficient Kij between inbreds

i and j on the basis of marker data as Kij = 1 ? (Sij - 1)/

(1 - Tij), where Sij is the proportion of marker loci with

shared variants between inbreds i and j, and Tij is the

average probability that a variant from one parent of inbred

i and a variant from one parent of inbred j are alike in state,

given that they are not identical by descent. The coefficient

Tij was estimated separately for each model and trait using

a REML method setting negative kinship values between

inbreds to zero.

For the detection of main effect QTL, a genome-wide

scan for marker-trait associations was conducted. Signifi-

cance of the allele substitution effect ap was assessed based

on the Wald F statistic. To control for multiple testing, we

followed the suggestion of Kraakman et al. (2004) and

tested at a false discovery rate (FDR) of 0.20 (Benjamini

and Hochberg 1995). A two-dimensional genome scan was

performed and all possible marker–marker interactions

were tested. The statistical model for the epistasis scan

was: yijvw = l ? mv ? mw ? mv:mw ? gi ? lj ? eijvw,

where mv and mw denote the effect of the vth and wth

marker genotype and mv:mw refers to the interaction effect

of the vth and wth marker genotype. As for the main

effects, epistatic QTL were detected with FDR \0.20. All

mixed model calculations were performed using the soft-

ware ASReml 2.0 (Gilmour et al. 2006).

The allele substitution effect was estimated in the mixed

model by a simultaneous fit of all significant QTL. The

total proportion of genotypic variance (pG) explained by

the detected QTL was calculated by fitting all QTL

simultaneously in a linear model to obtain Radj
2 . The ratio

pG = Radj
2 /h2 yielded the proportion of genotypic variance

(Utz et al. 2000).

Cross validation was applied to obtain an estimate of the

bias in the proportion of genotypic variance explained by

the detected QTL. We used fivefold cross validation with

80% of the lines (739) as estimation set in which the effects

of the QTL detected in the full data set were estimated.

These estimated effects were then used for a prediction in

the remaining 20% of lines (185). 1,000 runs were per-

formed and the mean Radj
2 between predicted and observed

phenotypic values in the test set was then used to estimate

the cross validated proportion of genotypic variance.

Results

The genotypic variances estimated in the population of 924

sugar beet lines were significantly larger than zero

(P \ 0.01) for all six traits (Table 1). Heritability ranged

from 0.38 for a-amino nitrogen to 0.70 for potassium.

Absolute values of phenotypic correlations among the six

traits were minimum between WSY and sodium (0.03) and

maximum between WSY and RY (0.87) (Fig. 1).

To obtain an estimate for the mapping resolution in our

population, we analyzed the extent of LD. The association

of LD and genetic map distance indicated that intra-

chromosomal LD decayed rapidly within a genetic distance

of approximately 10 cM and was rather low even for clo-

sely linked markers (Fig. 2, Supplementary Figure 3). The

average r2 between adjacent marker pairs was 0.10 but was

variable across the genome (Supplementary Figure 4). The

average of the highest r2 of each marker with any other

marker was 0.32.

Principal coordinate analysis revealed a considerable

population structure (Fig. 3a). The first PC alone explained

24.0% of the variance (Fig. 3b) and the violin plot revealed

that several of the first ten PCs were characterized by a

density distribution indicative of a population structure

(Fig. 3c). Kinship between the 924 sugar beet lines was

estimated by assessing the genetic similarity which

revealed presence of a family structure (Fig. 3d).
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The observed population and family structure prompted

us to test three different models to correct for population

stratification and familial relatedness. The K model inclu-

ded only the kinship (K) matrix whereas the KPReml and the

KPCor models included the K matrix and PCs (Supple-

mentary Tables 1, 2). We found that the optimum identity-

by-state estimates (T value) were almost identical for the

three models (Supplementary Figure 5). As a control, we

included a simple model without any correction for popu-

lation structure. The plots of observed versus expected

P values revealed for all traits strong bulges at the right side

of the plot for the simple model (Supplementary Figure 6).

The other three models were very similar and distributions

closely followed the diagonal indicating a good control for

population structure. A comparison between the three

models regarding the number of detected QTL and the

explained genotypic variance indicated that, in contrast to

our expectation, the K model was even more conservative

and detected fewer QTL for some traits (WSY, SC, N) than

the models including the additional P matrix (Table 2).

Also for those traits for which the K model detected more

QTL (RY, Na), this difference was negligible given a

comparable convergence, indicating that the K model is not

prone to an enhanced false positive rate due to an insuffi-

cient control of the genetic background. The comparison of

the detected QTL for traits for which the number of QTL

and their explained genetic variance was comparable

between the models showed, that most QTL were detected

by all three models but single QTL being detected only by

one model (Fig. 4). Taking into account the number of

markers for which the mixed model converged, the K model

outperformed the models including a P matrix and further

analyses were therefore done with the K model.

The full genome scan for main effect QTL identified

QTL for all six analyzed traits (Table 3, Supplementary

Figure 7). The proportion of genotypic variance explained

by the detected QTL was lowest for a-amino nitrogen

(10.4%) and highest for WSY (73.4%). The highest amount

of genotypic variance explained by a single marker was

found for RY (31.8%; Table 3). The fivefold cross valida-

tion resulted in a similar proportion of genotypic variance

explained by the detected QTL in the test set, compared to

the full data set (Fig. 5). The two-dimensional epistasis scan

revealed a high number of significant epistatic interactions

(Fig. 6). The proportion of significant epistatic QTL from

the total number of tests was 0.6% (WSY), 2.1% (SC), 3.6%

(RY), 1.5% (Na), 1.8% (K) and 0.4% (N).

Discussion

The increasing availability of molecular markers and the

steadily decreasing costs for genotyping have paved the

Table 1 Mean and range of the testcross performance of 924 sugar

beet genotypes, variances of the testcrosses for genotypes (rG
2 ) and

residuals (rE
2), and heritabilities (h2) for white sugar yield (WSY;

t ha-1), sugar content (SC; %), root yield (RY; t ha-1), sodium

content (Na; mM), potassium content (K; mM), and a-amino nitrogen

content (N; mM)

Parameter WSY SC RY Na K N

Mean 14.63 18.78 86.13 0.34 3.27 0.99

Min 11.89 17.77 72.07 0.15 2.52 0.59

Max 16.35 19.93 98.38 0.68 3.99 1.62

rG
2 0.18** 0.059** 8.18** 1.88e-3** 0.029** 7.51e-3**

rE
2 0.42 0.096 16.60 4.02e-3 0.030 29.59e-3

h2 0.51 0.60 0.55 0.53 0.70 0.38

** Significance at P \ 0.01

WSY

18 19 20

0.04
 

0.87**

0.2 0.4 0.6

-0.03
 

-0.09**

0.6 1.0 1.4

12
14

16

-0.11**

18
19

20

SC -0.37** -0.15** -0.19** -0.05
 

RY 0.08* 0.08*

75
85

95

-0.03
 

0.
2

0.
4

0.
6

Na 0.16** 0.08*

K

3.
0

4.
0

0.46**

12 14 16

0.
6

1.
0

1.
4

75 85 95 2.5 3.5

N

Fig. 1 Correlations between phenotypic values of the testcross

performance of 924 sugar beet genotypes evaluated for six traits

[WSY white sugar yield (t ha-1), SC sugar content (%), RY root yield

(t ha-1), Na sodium content (mM), K potassium content (mM), N a-

amino nitrogen content (mM)]. The lower part shows the bivariate

scatterplots with a fitted line (*, **significantly different from zero

with P \ 0.05 or P \ 0.01, respectively)
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way for advanced genomic tools also in crop species.

Association mapping is a promising avenue to use rou-

tinely generated phenotypic data in combination with high-

density marker information to investigate the genetic

architecture of agronomic traits. This stimulated us to

analyze six physiological and agronomic traits in a very

large sugar beet association mapping population and to

investigate the advantages and limitations of this approach.
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between the two markers as well as the LD observed between

unlinked marker pairs (unlinked)
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Fig. 3 Analysis of population structure and familial relatedness.

a Principal coordinate analysis of the 924 genotypes of the

population, based on modified Rogers’ distance estimates.

b Explained variance of the first ten principal coordinates. c Violin

plot showing the density distribution of the first ten principal

coordinates for the genotypes from the population. d Histogram of

the genetic similarities among the 924 genotypes
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Population structure in a large breeding population

The population analyzed in this study represents the largest

sugar beet population analyzed in an association mapping

approach thus far. The PCoA revealed a pattern charac-

teristic for breeding populations. Whereas most of the lines

cluster together in a cloud of more or less closely related

genotypes, some genotypes are more distant from the

others (Fig. 3a, d). The group of lines in the upper part of

Fig. 3a results from crosses between established elite lines

and more exotic lines which are being introgressed into the

breeding pool. In breeding populations, some elite lines

typically are used in many crosses and thus contribute to a

higher extent to the population than other lines. This and

the fact that breeders favor certain parental combinations

can explain the observed population structure. Conse-

quently, a correction for population structure might be

required for this data set.

Linkage disequilibrium and mapping resolution

The average r2 value between neighboring markers was

low with 0.1 (Fig. 2) and despite some adjacent marker

pairs showing high r2 values above 0.6, we detected only

Table 2 Comparison of the number of detected main effect QTL and the explained genotypic variance (pG) of these QTL for the three statistical

models K, KPReml and KPCor for all six traits

Model WSY SC RY Na K N

K

conv. (%) 96.0 100 99.9 100 100 85.5

QTL 8 4 10 15 4 9

pG (%) 73.4 38.1 63.1 58.7 12.8 10.4

KPReml

conv. (%) 100 100 99.9 100 100 –

QTL 13 9 8 13 4 –

pG (%) 80.5 43.7 49.4 47.7 12.8 –

KPCor

conv. (%) 100 100 99.9 2.7 100 64.5

QTL 8 4 7 2 2 14

pG (%) 54.5 19.6 46.4 14.2 5.6 21.4

For better comparison, the percentage of markers for which the model converged is given (conv.). For a-amino nitrogen content no PC was

selected for the KPReml approach (see Supplementary Table 1) and it is therefore similar to the K model

WSY white sugar yield (t ha-1), SC sugar content (%), RY root yield (t ha-1), Na sodium content (mM), K potassium content (mM), N a-amino

nitrogen content (mM)

K

KPReml

KPCor
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N
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0
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1
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0

0

0
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Fig. 4 Venn diagrams each

showing common and model-

specific main effect QTL

detected for the six traits

[WSY white sugar yield (t ha-1),

SC sugar content (%), RY root

yield (t ha-1), Na sodium

content (mM), K potassium

content (mM), N a-amino

nitrogen content (mM)]

with the three different models

(K, KPReml and KPCor)
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Table 3 Trait-associated markers, estimated allele substitution (a) effect, the explained genotypic variance (pG) and QTL reported in the

literature in the same region for the six traits

Marker Chr. Position (cM) a-Effect pG (%) Reported in literature

WSY

m183 3 45 -0.04 1.2 Weber et al. (1999)

m192 3 49 0.11 6.1 Weber et al. (1999)

m207 3 71 0.34 11.5

m259 4 37 0.17 26.4 Schneider et al. (2002)

m279 4 62 -0.11 2.9 Reif et al. (2010)

m377 5 71 -0.16 2.0

m418 6 57 -0.19 14.8 Weber et al. (1999, 2000)

m553 8 24 -0.12 9.8 Weber et al. (1999, 2000)

SC

m192 3 49 -0.10 12.9 Weber et al. (1999, 2000)

m224 4 10 0.27 5.6 Weber et al. (2000), Reif et al. (2010)

m233 4 16 -0.12 0.0 Weber et al. (2000), Reif et al. (2010)

m349 5 45 -0.08 20.2 Weber et al. (1999, 2000)

RY

m192 3 49 0.90 9.1

m202 3 61 -1.76 7.3

m203 3 67 0.47 0.0

m207 3 71 1.90 4.4

m224 4 10 -2.44 1.8 Schneider et al. (2002)

m259 4 37 0.76 3.1 Schneider et al. (2002)

m411 6 53 0.79 31.8 Reif et al. (2010)

m453 6 74 -0.61 0.8

m456 6 79 -1.54 0.9

m553 8 24 -0.70 5.7

Na

m141 2 78 -0.01 6.5 Weber et al. (1999)

m213 3 79 0.01 0.0

m230 4 16 -0.06 0.8

m260 4 38 -0.01 0.5 Weber et al. (1999, 2000)

m276 4 56 0.01 16.0 Reif et al. (2010)

m325 5 41 -0.05 6.6

m416 6 56 -0.01 10.8

m423 6 58 0.01 0.4

m446 6 65 0.01 0.2

m519 7 48 -0.00 0.0 Weber et al. (1999, 2000), Reif et al. (2010)

m520 7 49 0.01 1.2 Weber et al. (1999, 2000), Reif et al. (2010)

m547 8 17 -0.01 4.2 Weber et al. (1999, 2000)

m607 9 16 0.02 9.3 Reif et al. (2010)

m618 9 26 0.01 5.0 Reif et al. (2010)

m645 9 49 0.01 0.0 Weber et al. (1999, 2000)

K

m277 4 58 0.05 0.9

m325 5 41 -0.14 3.7 Weber et al. (1999, 2000), Reif et al. (2010)

m327 5 42 -0.05 6.0 Weber et al. (1999, 2000), Reif et al. (2010)

m597 8 65 0.08 2.8 Weber et al. (2000)

N

m197 3 54 -0.02 0.5 Weber et al. (1999, 2000)

Theor Appl Genet (2011) 123:1121–1131 1127

123



low average LD even for closely linked markers. This is in

accordance with results from maize populations from

breeding programs where the LD pattern was similar to the

LD observed in this study (Van Inghelandt et al. 2010). The

proportion of explained genotypic variance that can be

explained by a marker compared to that explained by the

linked QTL is directly proportional to the r2 value between

the marker and the QTL. The r2 value of 0.1 between

adjacent markers present in this data set has therefore

recently been suggested as the minimum threshold to detect

associations for comparably large QTL in populations of

reasonable size (Ersoz et al. 2007). It must, however, be

noted, that LD will always show a more irregular pattern

and will not decrease smoothly with genetic map distance

(Supplementary Figure 4). The focus of a LD analysis and

the deduced threshold determining the QTL detection

power should therefore not be limited to adjacent markers

only. We found that the average of the highest LD of each

marker with any other marker was higher with a r2 value of

0.32. This represents an estimate of the highest r2 that can

be expected on average for any QTL position with one of

the markers in the data set. This is considerably higher than

the r2 between adjacent markers and appears to represent a

better estimate of the LD present in association mapping

data sets determining the QTL detection power.

The observed LD has implications for the interpretation

of our results as the applied marker density will only

facilitate the detection of QTL with strong or medium

effects whereas QTL with smaller effect size will remain

undetected unless by chance they are in close proximity to

a marker. The positive aspect of this finding is that on

average LD appears to decay rapidly in this population

which enables a high-mapping resolution. To achieve this

and to detect also QTL with smaller effect size, the marker

density must be tremendously increased. To obtain a

desired r2 threshold between adjacent markers of 0.8, as

currently practiced in human genetics (Barett and Cardon

2006), a much higher marker density must be applied. With

the availability of the full genome sequence of sugar beet,

however, this goal can realistically be achieved in the near

future.

The analysis of the extent of LD along the chromosomes

indicated that there are chromosomal regions with a LD

0
10

0

E
xp

la
in

ed
 g

en
ot

yp
ic

 v
ar

ia
nc

e 
[%

]

20
40

60
80

WSY SC RY Na K N

cross validation

full data set

Fig. 5 Explained genotypic variance of the detected QTL in the full

data set (924 lines) and in fivefold cross validation. For the cross

validation 80% (739 lines) were used to estimate the effects of the

QTL, and the prediction was done in the remaining 20% (185 lines).

The genotypic variance that was explained with the estimated effects

in the prediction is given (WSY white sugar yield, SC sugar content,

RY root yield, Na sodium content, K potassium content, N a-amino

nitrogen content)

Table 3 continued

Marker Chr. Position (cM) a-Effect pG (%) Reported in literature

m232 4 16 0.01 0.0 Weber et al. (1999)

m286 5 0 0.09 3.8

m397 6 42 0.01 0.0

m486 7 23 0.01 0.6 Weber et al. (1999), Reif et al. (2010)

m552 8 24 0.03 1.4 Weber et al. (1999)

m554 8 25 -0.06 0.1 Weber et al. (1999)

m577 8 44 -0.03 2.0

m592 8 57 0.03 4.9

WSY white sugar yield (t ha-1), SC sugar content (%), RY root yield (t ha-1), Na sodium content (mM), K potassium content (mM), N a-amino

nitrogen content (mM)
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extent higher than average (Supplementary Figure 4). This

is in part due to a higher marker density in these regions,

but also reflects the history of the population, for example

regions where QTL for introgressed traits are located and

the consequences of co-selection of favorable gene com-

binations. The selection pressure in breeding populations

will make it unlikely that such combinations are broken but

rather are maintained for many generations.

In summary, excluding the few chromosomal regions

which were not sufficiently covered by markers, the overall

genome coverage and the observed LD enable association

mapping in this population with the restriction that only

QTL with large or medium effects can be identified.

Comparison of models for association mapping

Correction for the confounding effects of population

structure present in plant populations is essential for

association mapping if the population structure is associ-

ated with the trait (Zhao et al. 2007). To reduce the prob-

ability to detect false positive marker-trait associations, a

correction for population stratification (P matrix, Price

et al. 2006) and familial relatedness (K matrix; Yu et al.

2006) have been suggested. The plot of observed versus

expected P values revealed that a simple model without

any correction for population structure was not suited for

the analysis of this data set (Supplementary Figure 6).

Recent studies have shown that correction for familial

relatedness is sufficient in populations without a major

population structure (Reif et al. 2011a; Würschum et al.

2011). In this data set it was, however, not obvious whether

the kinship matrix alone would be sufficient to correct for

the present population structure, or if an additional cor-

rection by the inclusion of the P matrix was necessary. As

the by default inclusion of the first ten PCs appears

somewhat arbitrary, we tested two approaches including

PCs based on either their significance in the model or on

their association with the trait (KPReml and KPCor). The

rationale for these approaches was that either as few PCs as

possible should be included to avoid overcorrection

(KPReml) or that all PCs associated with the trait must be

incorporated to minimize the detection of false positives

(KPCor). The scan for the optimum identity-by-state prob-

ability (T value) revealed an identical T value estimate for

all three models. We then performed a full genome scan for

main effect QTL with these three models and found that in

terms of model stability (convergence of models as shown

in Table 2), number of detected QTL and the explained

genotypic variance explained by these QTL, the model

including only the kinship matrix performed best. We

speculate that, even though the PCoA revealed the presence

of a population structure in this data set, this is sufficiently

controlled by the kinship matrix making the incorporation

of a P matrix nonessential. Both, the K matrix and the

P matrix are based on marker data and their simultaneous

use may result in an overcorrection reducing the QTL

detection power. As the P matrix appeared to be not

required for the control of population structure and as these

models had more problems with model convergence, we

did the further analyses with the K model.

Detection of main effect QTL

In the genome-wide scan we detected main effect QTL for

all three yield-related traits (WSY, SC, RY) and for the

three physiological traits (Na, K, N). We performed a lit-

erature review for QTL reported for these traits in linkage

mapping studies (Weber et al. 1999, Weber et al. 2000,

Schneider et al. 2002) and one joint linkage association

mapping study (Reif et al. 2010) and compared the pub-

lished QTL with those detected in this study. As no com-

mon integrated map exists for sugar beet, such a

comparison must be interpreted cautiously as no precise

comparison of the QTL positions can be done due to the

different maps applied in the different studies. Neverthe-

less, the chromosomal regions harboring the QTL should in
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most cases be comparable across studies and many of the

QTL detected in this study collocated with previously

described QTL. Interestingly, we also detected a number of

QTL which have not been described so far, some of which

being major QTL with an explained genotypic variance

[5% (Table 3). With the exception of a-amino nitrogen

the total genotypic variance explained by the detected QTL

was high, explaining up to 73% (WSY, Table 2).

Due to the inherent population structure of association

mapping populations, cross validation approaches as done

in linkage mapping (Utz et al. 2000), are more problematic

in association mapping approaches (Müller et al. 2010).

Nevertheless, to obtain a first estimate of the prediction

power of the detected QTL, we performed a validation

approach in which the QTL detected in the full data set

were used to estimate their effects in an estimation set

(80% of the lines). These effects were then used for the

prediction in the test set (remaining 20% of the lines). We

observed that a large proportion of the explained genotypic

variance from the full data set was also observed in the

validation approach (Fig. 5). Cross validation in associa-

tion mapping certainly warrants further research, but our

results suggest, that the estimated effects of the QTL may

not be as strongly overestimated as in linkage mapping.

This shows that the association mapping approach used in

this study is a powerful tool to detect previously unknown

QTL. The advantage of this approach is that many lines are

included representing the full genotypic variance, increas-

ing the probability that QTL alleles are present in the

population under consideration.

Genetic architecture of physiological and agronomic

traits

Association mapping approaches have recently shown that

epistasis contributes to the expression of some traits in

wheat and sugar beet (Miedaner et al. 2010; Reif et al.

2011a; Würschum et al. 2011). We therefore also per-

formed a full two-dimensional genome scan and detected

epistatic QTL for all six traits. The large number of sig-

nificant QTL detected in this study compared to a previous

study in sugar beet (Würschum et al. 2011) may be

attributed to the applied significance threshold (FDR

\0.20) which was suited for the detection of main effects,

but appears too liberal for the detection of epistatic QTL.

Nevertheless, the plot of the detected significant epistatic

QTL revealed a genome-wide landscape of epistatic

interactions (Fig. 5). Interestingly, there appear to be

interaction hotspots, loci which are involved in a large

number of interactions with other loci across the whole

genome. These epistatic key regulators were sometimes

found in regions where a main effect was detected (i.e. Na

chromosome 6), but also on chromosomes without a main

effect (i.e. WSY chromosome 9). A recent study on flow-

ering time in wheat has revealed Vrn-A1 as such a key

regulator involved in many epistatic interactions though not

as a main effect (Reif et al. 2011a). Our study highlights the

importance of such loci which appear to be central to the

genetic interaction landscape and which were found for

both, agronomic and physiological traits. It is tempting to

speculate that such epistatic master regulators exist in all

species and for many quantitative traits and it will be

interesting to identify the molecular nature of such loci.

Our results confirm that the genetic architecture of

important agronomic and physiological traits in sugar beet

is defined by main effect QTL and epistatic QTL resulting

in complex networks that have to be considered in breeding

programs. The promise of QTL mapping studies for plant

breeding lies in the implementation of the detected QTL in

marker-assisted breeding programs to increase selection

gain and shorten the time required for the establishment of

new varieties. For all traits there are promising candidate

loci which explain a considerable proportion of the geno-

typic variance (Table 3) and which after validation could

be used in knowledge-based breeding.
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Schneider K, Schäfer-Pregl R, Borchardt C, Salamini F (2002)

Mapping QTLs for sucrose content, yield and quality in a sugar

beet population fingerprinted by EST-related markers. Theor

Appl Genet 104:1107–1113

St Onge RP, Mani R, Oh J, Proctor M, Fung E et al (2007) Systematic

pathway analysis using high-resolution fitness profiling of

combinatorial gene deletions. Nat Genet 39:199–206

Stich B, Melchinger AE, Heckenberger M, Möhring J, Schechert A
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